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Abstract 

Halo effects refer to a common source of error in human judgment. In rater-mediated assess-

ments where each rater assigns multiple scores to examinees, raters subject to halo tend to give 

similar scores on conceptually distinct traits, dimensions, or criteria. An intricate problem with 

empirically detecting halo effects concerns the separation between illusory halo due to judg-

mental biases or cognitive distortions, and true halo, due to actual overlap between the traits or 

criteria used for scoring examinee performances. The present research used the mixture Rasch 

facets model for halo effects (MRFM-H; Jin & Chiu, 2022) to detect illusory halo. In two sep-

arate studies, raters scored examinees' writing performances on a set of criteria using a four-

category rating scale. Halo parameters were estimated building on Bayesian Markov chain 

Monte Carlo methods implemented in the freeware JAGS run within the R environment. The 

findings revealed that (a) the MRFM-H fit the data well but not better than the basic Rasch 

facets model (RFM), (b) in Study 2, we identified three raters that may have been subject to 

illusory halo effects. The discussion focuses on practical implications for ensuring high rating 

quality in performance assessments. 
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Halo effects, or halo errors, have long been a concern for researchers and practitioners 

involving human raters to evaluate examinee responses or performances (Cooper, 

1981; Guilford, 1936; Thorndike, 1920). Typically, halo effects are an issue in rating 

designs where each rater assigns multiple scores to the same examinee, as when raters 

use an analytic scoring rubric to rate a given performance on distinct traits, dimen-

sions, or criteria (Balzer & Sulsky, 1992; Cooper, 1981). For example, raters may 

assign a separate score to content, organization, and language use when evaluating 

writing performances. In assessment contexts like this, raters subject to halo tend to 

give similar scores on conceptually distinct criteria (Myford & Wolfe, 2004).  

As commonly acknowledged, halo effects can originate from different cognitive or 

judgmental processes. Fisicaro and Lance (1990) distinguished three kinds of pro-

cesses: First, a particular rater may form a general impression of an examinee’s per-

formance, which directly impacts the evaluation on each criterion (e.g., a first impres-

sion based on physical appearance, age, ethnic, or gender stereotypes); second, the 

rater’s perception of an examinee’s performance may be dominated by a single, sub-

jectively salient performance feature (e.g., legible handwriting, strong voice); third, 

the rater may fail to discriminate adequately between the intended meanings of the 

criteria (e.g., due to lack of familiarity with scoring guidelines, fatigue). Whatever 

processes may be involved in any given instance, the final result is a biased evaluation 

of an examinee's performance, threatening the validity and fairness of the assessment 

outcomes. Put differently, the amount of unique information conveyed by each single 

criterion score is significantly reduced in the presence of halo effects. 

Therefore, detecting halo effects plays an essential role in ensuring high rating quality 

in performance assessments (Knoch et al., 2021; Wind & Peterson, 2018; Wolfe & 

Song, 2016). Over the years and decades, many methods, statistics, and measures have 

been proposed for that purpose (Balzer & Sulsky, 1992; Cooper, 1981; Saal et al., 

1980). More common statistics include the mean intercorrelation among scores on 

different criteria or the within-examinee variability (standard deviation) across criteria 

(Fisicaro & Vance, 1994; Murphy, 1982). Following these statistics' rationale, halo 

effects would manifest in increased mean criterion intercorrelations or lowered 

within-examinee standard deviations.  

More sophisticated approaches rest on measurement models, particularly the many-

facet Rasch measurement or facets modeling framework (Linacre, 1989). For exam-

ple, researchers discussed several methods and statistics for detecting halo effects 

building on facets models (Engelhard, 2002; McNamara & Adams, 2000; Myford & 

Wolfe, 2004). However, most of these statistics, such as residual-fit statistics, often 

fail to provide conclusive evidence of halo effects. Thus, Myford and Wolfe (2004) 

cautioned that "interpretation of the fit indices is not straightforward, but rather con-

text bound" (p. 211). A relevant context factor is the variation of criterion or trait 

difficulties (Myford & Wolfe, 2004): In an assessment where criterion difficulties 

show little variation, halo effects would be indicated by mean-square fit statistics less 

than 1 (overfit); conversely, when criterion difficulties show large variation, halo ef-

fects would be indicated by mean-square fit statistics greater than 1 (misfit). To 
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complicate matters, the extent to which criterion difficulties vary is usually unknown 

before analyzing the rating data and may differ from rater to rater (Marais & Andrich, 

2011). 

There is a considerable body of research showing that facets models are well suited to 

measure and compensate for well-known rater effects, including severity/leniency 

(Eckes, 2005, 2015; Engelhard, 2002; Engelhard & Wind, 2018; McNamara et al., 

2019; Myford & Wolfe, 2003, 2004) and, more recently, centrality/extremity (Eckes 

& Jin, 2021a, 2021b; Jin & Eckes, in press; Jin & Wang, 2018) as well as differential 

rater functioning (Jin & Eckes, 2021; Jin & Wang, 2017). However, facets models 

specifically addressing the detection and measurement of halo effects have long been 

lacking. Jin and Chiu (2022) advanced a facets modeling approach that closes this 

gap. In the present research, we apply the Jin and Chiu model to two real data sets 

drawn from rater-mediated writing assessments and discuss the model’s implications 

for studying halo effects in rater-mediated assessments more generally. 

 

True and Illusory Halo Effects 

Previous attempts at identifying halo effects have faced a specific challenge: Many 

criteria, traits, or dimensions used in analytic scoring are correlated with one another 

simply because they relate to the same construct, latent variable, or performance the 

assessment is targeting. This kind of intrinsic relation among traits or criteria gives 

rise to what has been called “true” or “valid” halo, as opposed to “illusory” or “inva-

lid” halo (e.g., Bartlett, 1983; Murphy, 1982; Pulakos et al., 1986). Murphy et al. 

(1993) expressed this distinction clearly: 

 

“Except in those rare circumstances in which the dimensions being 

rated are truly orthogonal, the observed correlation between 

dimensional ratings represents a composite of the true correlation and 

the net result of the cognitive distortions, errors in observation and 

judgment, and rating tendencies of the individual rater (i.e., illusory 

halo)” (p. 220). 

 

Several researchers proposed methods to distinguish true from illusory halo (Balzer 

& Sulsky, 1992; Bechger et al., 2010; Lai et al., 2015). Most of these methods require 

using a special kind of rating design. For example, Balzer and Sulsky (1992) sug-

gested collecting expert ratings, assumed to be largely unaffected by halo, and com-

paring these "true" ratings with the ratings provided by operational raters. According 

to this approach, illusory halo would be indicated, for example, by trait intercorrela-

tions for operational ratings closer to 1.0 than the corresponding value for expert rat-

ings. However, expert ratings are not readily available in many applied settings, incur 

extra costs, and may themselves be subject to illusory halo to some extent. 
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Lai et al. (2015) suggested an even more demanding rating design. Their proposal 

entails comparing scores obtained when a single rater evaluates examinee perfor-

mances on all traits or criteria (single-rater multi-trait design) to scores obtained when 

different raters each evaluate examinee performances on only a single trait (multi-

rater single-trait design; for a similar approach, see Bechger et al., 2010). Lai et al. 

provided evidence that ratings from a multi-rater single-trait design may be less sub-

ject to illusory halo than ratings from a single-rater multi-trait design. However, as the 

authors admit, rating designs involving multiple raters (each rating a different trait) 

are more difficult and expensive to implement than single-rater designs. They also 

called attention to the fact that illusory halo can still exist in single-trait designs. For 

example, raters may be influenced similarly by the same performance features, con-

stituting what Marais and Andrich (2011) called a common rater halo effect. In retro-

spect, these caveats seem to lend substance to Murphy et al.’s (1993) earlier conclu-

sion that “it is impossible to separate true from illusory halo in most field settings” (p. 

223). 

However, as discussed in the next section, this conclusion is no longer valid in its 

generality. Jin and Chiu’s (2022) new facets modeling approach estimates the extent 

to which individual raters are subject to illusory halo, thus empirically separating true 

from illusory halo. This separation is accomplished building on rating designs com-

monly used in rater-mediated assessment settings. 

 

The Mixture Rasch Facets Model for Halo Effects  

(Jin & Chiu, 2022) 
 

Facets models in widespread use today rest on Linacre’s (1989) many-facet extensions 

of the Rasch rating scale model (RSM; Andrich, 1978) or partial credit model (PCM; 

Masters, 1982). As a starting point for developing a facets model capable of detecting 

illusory halo, Jin and Chiu (2022) considered a typical three-facet assessment situation 

where J raters assign scores to N examinees on I criteria using a rating scale with m + 

1 categories, that is, k = 0, …, m. When employing a PCM instantiation, the Rasch 

facets model (RFM) may be specified as follows: 

                                   ln [
𝑝𝑛𝑖𝑘𝑗

𝑝𝑛𝑖(𝑘−1)𝑗
] = 𝑛 − (

𝑖
+ 𝑖𝑘) − 𝑗 ,    (1) 

where pnikj is the probability of examinee n receiving on criterion i a rating of k from 

rater j, pni(k–1)j is the probability of examinee n receiving on criterion i a rating of k – 

1 from rater j, n is the ability of examinee n, i is the difficulty of criterion i, ik is the 

difficulty of receiving on criterion i a rating of k relative to k – 1, and j is the severity 

of rater j. 

In Equation 1, the parameter ik is the Rasch–Andrich threshold parameter (Andrich, 

1998; Linacre, 2006) defined for a particular criterion. It is assumed that the rating 
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scale structure varies from criterion to criterion. In other words, the model shown in 

Equation 1 is a three-facet criterion-related PCM accounting for rater severity. Alter-

natively, an RSM version could be specified by defining the threshold parameter as 

constant across criteria (i.e., replacing, in Eq. 1, ik by k). Such a model would impose 

the same set of threshold values for all raters and criteria. From a substantive point of 

view, the RSM version of the RFM implies that raters use the rating scale categories 

across criteria in the same manner (Eckes, 2015; Linacre, 2000). We adopted the less 

restrictive approach and estimated criterion-specific threshold values in the present 

research. Each criterion is allowed to have a unique rating scale structure. Therefore, 

we examined how the rating scale functioned for different criteria. 

Jin and Chiu (2022) extended the RFM given above to capture the distinction between 

illusory and true halo effects. The mixture Rasch facets model for halo effects 

(MRFM-H) includes a latent rater severity dimension and two latent classes for raters, 

that is, the class of “normal” (or “no-halo”) raters and the class of “(illusory) halo 

raters”. Specifically, the MRFM-H is given as follows: 

                 ln [
𝑝𝑛𝑖𝑘𝑗

𝑝𝑛𝑖(𝑘−1)𝑗
] = 𝑛 − (1 − 𝑥𝑗)(

𝑖
+ 𝑖𝑘) − 𝑥𝑗(

∗ + k
* )  − 𝑗 , (2) 

where all parameters are as in Equation 1 except for the xj parameter and the * and 

the k
*  terms discussed below.  

The xj parameter is a binary variable following a Bernoulli distribution π; this variable 

indicates the latent class membership of rater j. That is, if rater j exhibits illusory halo, 

xj = 1; otherwise, xj = 0. Hence, the likelihood of the observed ratings reveals the latent 

class to which rater j belongs. When xj = 0 for each rater j  J, all raters are normal 

raters showing no illusory halo effect. In this case, the MRFM-H reduces to the RFM 

(Jin & Chiu, 2022). 

The * and the k
*  terms designate the difficulty and the threshold values, respectively, 

of a generalized criterion i*: 

                                                        * = 1 =  = I,    (3) 

                                                        k
*  = 1k =  = Ik.    (4) 

The generalized criterion i* represents a combination of the individual, analytic criteria 

when raters are subject to halo effects and, therefore, do not distinguish between cri-

teria, leading them to assign each examinee similar scores across the criteria (Myford 

& Wolfe, 2004). In this case, the criteria will not differ significantly in terms of their 

difficulty and the associated threshold values, respectively. For model identification, 

the constraint i = 0 is required; therefore, * equals zero, implying that the gener-

alized criterion represents halo raters’ overall evaluation standard. 

Regarding the MRFM-H (Eq. 2), criteria possessing homogeneous psychometric char-

acteristics (i.e., highly similar  and  parameters, respectively) yield similar ratings, 

indicating true halo effects. Hence, the conditional probability of a normal rater as-

signing a score will be identical across criteria. Conversely, when criteria possess 
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heterogeneous psychometric characteristics (i.e., when  and  parameters, respec-

tively, vary greatly across criteria), similar ratings are probably caused by illusory 

halo effects. In this case, the conditional likelihoods of a normal rating will differ 

substantially from those of an illusory halo rating. Therefore, the xj parameter in Equa-

tion 2 represents the magnitude of an illusory halo effect for rater j. 

In a simulation study, Jin and Chiu (2022) demonstrated the efficiency of the MRFM-

H to detect illusory halo. Building on a Bayesian estimation approach, they showed 

that applying the MRFM-H yielded over 99% recovery of raters’ normal vs. illusory 

halo class membership (raters were classified as illusory halo raters when the xj esti-

mate exceeded .5). When this model was fitted to data where raters exhibited no halo 

effects (i.e., when the RFM was the true model), the MRFM-H recovered parameter 

estimation (rater severity, criterion difficulty, and thresholds) as well as the RFM. 

Applications of the MRFM-H to several real datasets yielded further evidence of the 

model’s efficiency.  

The present research applied the MRFM-H (Eq. 2) to real datasets from a different 

assessment context, thereby widening the scope of this model’s use. Also, we con-

ducted a more detailed analysis of the MRFM-H data–model fit, compared the 

MRFM-H parameter estimates to those provided by the RFM, and looked at the mod-

el's practical implications. The datasets were the same as previously analyzed using 

facets models designed to detect rater centrality effects (Eckes & Jin, 2021). There-

fore, besides using datasets possessing well-known characteristics, this reanalysis had 

the additional advantage of comparing parameter estimates across different models 

and analyses, lending substance to conclusions drawn from the analyses. Also, the 

Study 1 dataset is publicly available (Eckes, 2019; Eckes & Jin, 2021).3 

Specifically, both datasets reanalyzed here were from rater-mediated writing assess-

ments administered in the context of admission to higher education institutions in Ger-

many. In two separate language proficiency examinations (called Study 1 and Study 

2, hereafter), raters scored examinees’ writing performances on a set of criteria using 

a four-category rating scale. Differences between the two studies lay primarily in (a) 

the way raters were assigned to examinee performances and (b) the kind and number 

of criteria included in the scoring rubric (more detail on these differences is provided 

later).  

 

 

 

3  The complete data set is available at the following address: https://www.routledge.com/Quantitative-

Data-Analysis-for-Language-Assessment-Volume-I-Fundamental/Aryadoust-

Raquel/p/book/9781138733121#companion. The data are also available from the first author upon re-

quest. 
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Research questions 

We reanalyzed two datasets from writing assessments using Jin and Chiu’s (2022) 

mixture Rasch facets model for halo effects (MRFM-H). Based on the MRFM-H and 

adopting Bayesian parameter estimation procedures, we investigated the extent to 

which raters were subject to illusory halo. We also ran the Rasch facets model (RFM) 

on the same data to compare with the MRFM-H findings. Following this methodolog-

ical approach, the present research aimed to answer the following three questions: 

1. How does the MRFM-H fit the writing assessment data? 

2. How does the MRFM-H compare to the RFM in terms of data–model fit? 

3. Does the MRFM-H identify individual raters exhibiting illusory halo effects? 

 

Method 

Participants 

In both studies, the examinees were international students applying for entry to higher 

education institutions in Germany. Raters were specialists in German as a foreign lan-

guage trained and monitored to comply with the scoring guidelines. In Study 1, 18 

raters scored the writing performances of 307 examinees; in Study 2, 12 raters scored 

the writing performances of 206 examinees (see Table 1 for more information on ex-

aminee and rater samples). 
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Table 1: Study 1 and Study 2 assessment design features 

Feature Study 1 Study 2 

Facets 

   Examinees (N) 

      Females (%) 

      Males (%) 

 

307 

158 (51.5) 

149 (48.5) 

 

206 

140 (68.0) 

66 (32.0) 

   Raters (J) 

      Females (%) 

      Males (%) 

18 

14 (77.8) 

4 (22.2) 

12 

11 (91.7) 

1 (8.3) 

   Criteria (I) 3 9 

Rating scale categories 4 4 

Number of essays rated 

   Min 

   Max 

   M 

 

19 

68 

36.0 

 

29 

30 

29.9 

Proportion of missing ratings (%) 88.3 85.5 

Note. In Study 1 and Study 2, the rating design was incomplete but connected 

(performance links design). 

 

Instruments and procedure 

In each study, the writing task was part of the Test of German as a Foreign Language 

(TestDaF, Test Deutsch als Fremdsprache) – an officially recognized language exam 

for international students applying for entry to higher education institutions in Ger-

many (Eckes & Althaus, 2020). Examinee performance in each of four test sections 

(reading, listening, writing, and speaking) is related to one of three increasingly higher 

levels of language proficiency, the TestDaF levels (TestDaF-Niveaus, TDNs). For a 

review of the TestDaF, see Norris and Drackert (2018). 

The writing section assesses an examinee’s ability to produce a coherent and well-

structured text on a given topic taken from the academic context. A single task re-

quires two types of prose: description and argumentation. More precisely, in the first 

part of this section, charts, tables, or diagrams are provided along with a short intro-

ductory text, and the examinee is asked to describe the relevant information. Specific 

points to be dealt with are stated in the rubric. In the second part, the examinee has to 

consider different positions on an aspect of the topic and write a well-structured argu-

ment. The input consists of short statements, questions, or quotes. As before, aspects 

to be dealt with in the argumentation are stated in the rubric. 
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The Study 1 and Study 2 rating designs were incomplete but connected (Eckes, 2015). 

In other words, the designs corresponded to the performance links design Jin and Chiu 

(2022) used in their simulation study. Specifically, in Study 1, two raters rated each 

performance independently on the writing task (i.e., each essay). Also, one rater pro-

vided ratings of two randomly selected essays from each of the other 17 raters' work-

load. Raters scored the essays using a four-category scale, the TDN scale, with cate-

gories below TDN 3, TDN 3, TDN 4, and TDN 5. For computations, below TDN 3 was 

scored “2”, and the other levels were scored from “3” to “5”.  

Ratings were provided separately on three criteria: global impression (referring to 

lower-level aspects such as fluency, train of thought, and structure), task fulfillment 

(completeness, description, and argumentation), and linguistic realization (breadth of 

syntactic elements, vocabulary, and correctness). Following the Study 1 rating design, 

there were 648 ratings; that is, 614 double ratings plus 34 third ratings, making a total 

of 1,944 ratings (the proportion of missing ratings was 88.3%).  

The Study 2 rating data were collected as part of a larger validation program, focusing 

on the TestDaF writing, speaking, and listening sections. A total of 206 examinee 

performances were sampled from the entire set of 3,949 essays produced by TestDaF 

examinees in April 2012 (2,557 females, 1,392 males). Performances covered the 

whole range of TDN levels. Following the Study 2 rating design, all 12 raters inde-

pendently scored the same subset of 10 randomly selected essays; most of the remain-

ing essays were each rated by a single rater (some of these essays were also rated by 

two raters each to strengthen the link between raters).  

Different from Study 1, raters in Study 2 scored the essays separately on each of the 

lower-level aspects fluency, train of thought, and structure (replacing the higher-level 

global impression criterion); completeness, description, and argumentation (replacing 

the task fulfillment criterion); and breadth of syntactic elements, vocabulary, and cor-

rectness (replacing the linguistic realization criterion). One rater inadvertently re-

turned scores for only 29 examinees; the other 11 raters provided scores for 30 exam-

inees, resulting in a set of 359 ratings on each of the nine criteria. Thus, a total of 

3,231 ratings was available for estimating RFM and MRFM-H parameters (the pro-

portion of missing ratings was 85.5%). Table 1 summarizes the design features char-

acterizing Study 1 and Study 2. 

 

Data analysis 

We estimated the model parameters building on a Bayesian approach (Gelman et al., 

2013; Lunn et al., 2013). In particular, Bayesian estimation was performed using Mar-

kov chain Monte Carlo (MCMC) techniques implemented in the JAGS freeware 

(JAGS = Just Another Gibbs Sampler; Plummer, 2017). The R2jags package (Su & 

Yajima, 2021) was employed to run the MCMC models in JAGS. This package pro-

vides interface functions to facilitate running user-specified MCMC models within R 

(R Core Team, 2021).  
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Following Jin and Chiu (2022), we specified the prior distributions of the model pa-

rameters as follows: 

     θn  ~  N(µ, 1/2),     (5) 

i  ~  N(0, 0.1),    (6) 

j  ~  N(0, 0.1),    (7) 

    ik  ~  N(0, 0.1),      (8) 

xj  ~  Bernoulli(π),    (9) 

where N(, ) is the normal distribution with mean  and precision , for  > 0; the 

variance 2 of the normal distribution is 1/; Bernoulli(p) is the Bernoulli distribution 

with probability p (Lunn et al., 2013). 

Also, we used the following priors for the hyperparameters: 

µ  ~  N(0, 0.1),     (10) 

2  ~  Gamma(0.1, 0.1),    (11) 

           π  ~  Beta(1, 1),    (12) 

where Gamma(r, ) is the Gamma distribution with shape r and rate ; Beta(, ) is 

the Beta distribution with shape parameters  and  (Lunn et al., 2013).  

Three MCMC chains were run to assess convergence to the posterior distribution. The 

initial 5,000 draws were discarded in each chain as burn-in, and the draws from the 

subsequent 5,000 iterations were retained for parameter estimation. The mean of the 

posterior distributions was used as the point estimate, or expected a-posteriori (EAP) 

estimate, of a given parameter; similarly, the posterior standard deviation was used as 

an estimate of the standard (or model) error associated with a parameter estimate. The 

gap between posterior draws was set at 10 to reduce the autocorrelation effect; that is, 

every 11th posterior draw was recorded (Levy & Mislevy, 2016). These specifications 

were the same in Study 1 and Study 2.  

As an index of convergence to the posterior distribution, the proportional scale reduc-

tion factor (PSRF) of the Gelman–Rubin statistic (Gelman & Rubin, 1992) was used. 

The PSRF index compares, for each parameter, the between-chain and within-chain 

variances of samples from the posterior distribution. It is commonly suggested to infer 

that the chains have converged to the posterior distribution if the PSRF values are 

close to 1 (i.e., PSRF < 1.1; Levy & Mislevy, 2016, p. 109). 

Using the posterior predictive model-checking (PPMC) method, we examined the fit 

of the (observed) data to the model (Gelman et al., 2013; Levy & Mislevy, 2016). This 

method compares the observed data with the data generated or predicted by the model. 

In particular, the PPMC approach involves computing a discrepancy measure using 

each simulated value from the posterior distributions for the parameters. Plotting the 

distribution of these values (the realized values) against the posterior predictive 
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values' distribution provides a graphical display of data–model fit, which may be sum-

marized in the tail-area probability, also known as the posterior predictive p-value 

(PPP-value). Extreme PPP-values (i.e., values close to 0 or 1) indicate poor data–

model fit; medium values, that is, values around .5, indicate much better fit (Levy & 

Mislevy, 2016, p. 242). 

Finally, to address the issue of relative model fit, three different criteria were com-

puted. The first criterion was the Bayesian deviance information criterion (DIC; Spie-

gelhalter et al., 2002; van der Linde, 2005). Models showing smaller DIC values gen-

erally fit better (Levy & Mislevy, 2016, p. 248). 

Some research has indicated that DIC may not function well when considering more 

complex models, particularly models including latent classes (Gelman et al., 2013; 

Merkle et al., 2019; Spiegelhalter et al., 2014). Therefore, we computed two other 

Bayesian model comparison methods: the Watanabe–Akaike Information Criterion 

(WAIC; Watanabe, 2010) and the Leave-One-Out Information Criterion (LOOIC; 

Geisser & Eddy, 1979), both available in the R package loo (Vehtari et al., 2020). 

Unlike DIC, WAIC and LOOIC require the use of the whole posterior distribution 

instead of point estimates, which is why these two criteria are viewed as fully Bayes-

ian (Gelman et al., 2013, 2014; Luo & Al-Harbi, 2017).  

 

Results 

Data–model fit 

Tables 2 and 3 summarize the convergence and data–model fit statistics. In both stud-

ies and for each parameter under the RFM and the MRFM-H, respectively, the poten-

tial scale reduction factor (PSRF) values were close to 1.0, indicating that the MCMC 

chains converged to the target (posterior) distribution without problems. Also, the 

PPP-values were non-extreme or close to .5, confirming that, in each instance, the 

data–model fit was satisfactorily high.  

The DIC statistics for Study 1 and Study 2 show that the RFM fit the data slightly 

better than the MRFM-H. However, differences of the magnitude observed here (i.e., 

less than 5) are commonly not considered as favoring one model over the other (Gel-

man et al., 2013; Lunn et al., 2013). Much the same conclusions hold for the WAIC 

and LOOIC statistics; the differences are negligibly small in size. In other words, for 

the present data sets, there do not seem to be any substantial differences in RFM and 

the MRFM-H regarding model fit. 
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Table 2: Bayesian model fit and comparison statistics, Study 1 

Statistic RFM MRFM-H 

PSRF (min–max)   

   Examinee proficiency 1.000–1.025 1.000–1.021 

   Rater severity 1.003–1.018 1.003–1.016 

   Criterion difficulty 1.001–1.002 1.000–1.007 

   Thresholds 1.000–1.003 1.001–1.009 

PPP-value .500 .487 

DIC 3,307.6 3,308.4 

WAIC 3,218.1 3,220.4 

LOOIC 3,232.4 3,235.4 

Note. RFM = Rasch facets model. MRFM-H = mixture Rasch facets model for halo 

effects. Throughout the RFM and MRFM-H analyses, the partial credit versions were 

used. PSRF = Proportional scale reduction factor. PPP-value = Posterior predictive p-

value. DIC = Deviance information criterion. WAIC = Watanabe–Akaike information 

criterion. LOOIC = Leave-one-out information criterion.  

 

Table 3: Bayesian model fit and comparison statistics, Study 2 

Statistic RFM MRFM-H 

PSRF (min–max)   

   Examinee proficiency 1.000–1.025 1.000–1.009 

   Rater severity 1.007–1.042 1.002–1.008 

   Criterion difficulty 1.000–1.002 1.000–1.007 

   Thresholds 1.000–1.005 1.000–1.007 

PPP-value .331 .327 

DIC 5,869.6 5,881.7 

WAIC 5,842.4 5,843.3 

LOOIC 5,847.0 5,848.2 

Note. RFM = Rasch facets model. MRFM-H = mixture Rasch facets model for halo 

effects. Throughout the RFM and MRFM-H analyses, the partial credit versions were 

used. PSRF = Proportional scale reduction factor. PPP-value = Posterior predictive p-

value. DIC = Deviance information criterion. WAIC = Watanabe–Akaike information 

criterion. LOOIC = Leave-one-out information criterion. 
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Criterion difficulty and threshold parameter estimates 

Table 4 presents the RFM and the MRFM-H estimates of criterion difficulty and cri-

terion-specific thresholds (Study 1). With both kinds of analysis, global impression 

was much less difficult than task fulfillment and linguistic realization, respectively; 

also, these two criteria proved to be similarly difficult – a finding in line with earlier 

analyses of the same data using different facets models (Eckes, 2015; Eckes & Jin, 

2021). Similarly, the close correspondence of threshold estimates across criteria indi-

cates that the raters used and interpreted the rating scale in much the same way irre-

spective of the criterion considered.  

 

Table 4: Bayesian criterion difficulty and threshold estimates, Study 1 

 RFM  MRFM-H 

Criterion Estimate SE  Estimate SE 

Global impres-
sion 

     

   1 –0.77 0.07  –0.83 0.09 

   1 –2.78 0.19  –2.78 0.19 

   2 –0.24 0.12  –0.25 0.14 

   3 3.02 0.16  3.03 0.16 

Task fulfillment      

   2 0.37 0.06  0.40 0.07 

   1 –2.87 0.17  –2.89 0.17 

   2 –0.22 0.12  –0.20 0.12 

   3 3.09 0.16  3.10 0.16 

Linguistic reali-
zation 

     

   3 0.40 0.07  0.43 0.08 

   1 –3.12 0.17  –3.14 0.17 

   2 0.02 0.12  0.00 0.12 

   3 3.11 0.17  3.14 0.17 

Note. RFM = Rasch facets model. MRFM-H = mixture Rasch facets model for halo 

effects. 
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Regarding the enlarged set of criteria used in Study 2 (Table 5a, Table 5b), the diffi-

culty estimates reveal that, in both the RFM and the MRFM-H analyses, structure 

(part of global impression) was the easiest, and description (part of task fulfillment) 

was the most difficult criterion. Overall, under both models, the criterion difficulty 

and threshold estimates, respectively, were highly similar. 

 

Table 5a: Bayesian criterion difficulty and threshold estimates, Study 2 

 RFM  MRFM-H 

Criterion Estimate SE  Estimate SE 

Fluency      

   1 0.06 0.09  0.21 0.12 

   1 –2.48 0.17  –2.47 0.22 

   2 –0.46 0.15  –0.66 0.20 

   3 2.94 0.18  3.13 0.26 

Train of thought      

   2 0.22 0.09  0.44 0.12 

   1 –2.48 0.16  –2.58 0.19 

   2 0.25 0.15  0.40 0.22 

   3 2.24 0.18  2.17 0.24 

Structure      

   3 –0.66 0.10  –0.87 0.15 

   1 –2.61 0.18  –2.31 0.23 

   2 –0.01 0.15  –0.04 0.19 

   3 2.62 0.17  2.35 0.21 

Completeness      

   4 –0.53 0.09  –0.68 0.13 

   1 –2.56 0.18  –2.55 0.32 

   2 –0.34 0.16  –0.23 0.21 

   3 2.90 0.17  2.79 0.27 

Description      

   5 0.62 0.09  0.92 0.14 

   1 –2.10 0.15  –2.22 0.19 

   2 0.08 0.16  –0.09 0.22 

   3 2.02 0.19  2.30 0.25 

Note. RFM = Rasch facets model. MRFM-H = mixture Rasch facets model for halo effects. 
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Table 5b: Bayesian criterion difficulty and threshold estimates, Study 2 

 RFM  MRFM-H 

Criterion Estimate SE  Estimate SE 

Argumentation      

   6 0.20 0.09  0.08 0.15 

   1 –2.51 0.16  –2.42 0.22 

   2 0.14 0.15  0.17 0.22 

   3 2.37 0.18  2.25 0.24 

Syntactic  
elements 

     

   7 –0.29 0.08  –0.63 0.15 

   1 –2.29 0.16  –2.54 0.22 

   2 0.06 0.15  0.07 0.19 

   3 2.23 0.16  2.47 0.21 

Vocabulary      

   8 –0.04 0.09  –0.07 0.13 

   1 –2.67 0.16  –2.79 0.23 

   2 –0.06 0.15  –0.00 0.19 

   3 2.73 0.17  2.79 0.23 

Correctness      

   9 0.42 0.09  0.59 0.14 

   1 –2.37 0.15  –2.47 0.21 

   2 –0.06 0.15  –0.14 0.21 

   3 2.44 0.18  2.61 0.25 

Note. RFM = Rasch facets model. MRFM-H = mixture Rasch facets model for halo 

effects. 

 

Rater parameter estimates 

Looking first at the severity estimates shown in Table 6, it is evident that the models 

maximally agreed in each rater’s location along the severity dimension; r(18) > .99. 

Thus, in both the RFM and the MRFM-H analyses, Raters 16 and 13 were the most 

severe raters, and Raters 1 and 7 were the most lenient raters (see also Eckes, 2015; 

Eckes & Jin, 2021). Regarding the rater halo estimates (last column), there was only 

a single rater (i.e., Rater 6) possibly subject to an illusory halo effect (x-estimate = 

.74). However, the associated standard error was very high (SE = .44), rendering any 

conclusion regarding this rater’s halo tendency questionable. This finding concurs 
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with the negligible difference between the RFM and the MRFM-H in data–model fit 

(Table 2). 

 

Table 6: Bayesian severity and halo parameter estimates for 18 raters, Study 1  

 Observed scores  RFM  MRFM-H 

Rater N M SD   Est. (SE)   Est. (SE) x Est. (SE) 

1 20 4.52 0.54  –2.00 (.50)  –1.99 (.50) .00 (.04) 

2 24 4.10 0.86  –1.14 (.49)  –1.14 (.50) .00 (.00) 

3 41 4.02 0.82  –1.36 (.42)  –1.34 (.43) .00 (.00) 

4 24 3.72 0.76  0.11 (.49)  0.13 (.51) .10 (.30) 

5 41 3.37 1.06  0.80 (.39)  0.80 (.41) .00 (.00) 

6 34 3.59 0.93  0.09 (.36)  0.12 (.39) .74 (.44) 

7 68 4.06 0.77  –1.82 (.37)  –1.83 (.40) .00 (.00) 

8 47 3.49 0.99  0.28 (.41)  0.32 (.40) .40 (.49) 

9 47 3.39 0.83  1.01 (.38)  1.04 (.40) .00 (.04) 

10 41 3.48 0.97  –0.62 (.38)  –0.60 (.40) .01 (.10) 

11 19 3.54 0.95  0.07 (.46)  0.11 (.48) .02 (.14) 

12 44 3.61 0.94  –0.45 (.40)  –0.42 (.40) .00 (.00) 

13 41 3.11 0.98  1.80 (.43)  1.84 (.43) .00 (.03) 

14 43 3.45 0.84  1.43 (.42)  1.47 (.42) .01 (.08) 

15 28 3.58 1.00  0.80 (.42)  0.79 (.44) .28 (.45) 

16 20 3.03 1.10  1.95 (.50)  1.97 (.49) .06 (.23) 

17 45 3.98 0.77  –0.58 (.40)  –0.55 (.41) .00 (.00) 

18 21 3.81 1.01  –0.26 (.45)  –0.26 (.48) .00 (.00) 

Note. Observed score statistics refer to the four-category rating scale ranging from 2 

(below TDN 3) to 5 (TDN 5). RFM = Rasch facets model. MRFM-H = mixture Rasch 

facets model for halo effects. N is the number of essays rated.  Est. is the estimate of 

the rater severity parameter. x Est. is the estimate of the rater halo parameter.  
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Table 7 shows the severity and halo estimates for Study 2 raters. Again, the RFM and 

MRFM-H severity estimates were maximally congruent; r(12) > .99. For example, 

both models identified Rater 9 as the most severe and Rater 6 as the most lenient rater. 

Different from Study 1, the MRFM-H analysis suggests that there may be five raters 

(i.e., Raters 2, 6, 7, 10, and 11) exhibiting illusory halo tendencies. However, the as-

sociated standard errors are low enough to support such a conclusion only for three 

raters (i.e., Raters 6, 7, and 11).  

 

Table 7: Bayesian severity and halo parameter estimates for 12 raters, Study 2  

 Observed scores  RFM  MRFM-H 

Rater N M SD   Est. (SE)   Est. (SE) x Est. (SE) 

1 30 3.39 0.77  0.60 (.27)  0.59 (.24) .00 (.00) 

2 30 3.36 1.00  0.28 (.25)  0.25 (.22) .64 (.48) 

3 30 3.41 0.94  0.12 (.25)  0.09 (.22) .38 (.49) 

4 30 3.39 0.94  –0.10 (.27)  –0.12 (.24) .00 (.00) 

5 29 3.51 0.83  0.24 (.27)  0.22 (.24) .00 (.00) 

6 30 3.83 0.88  –1.45 (.28)  –1.47 (.25) .99 (.03) 

7 30 3.53 0.93  –0.29 (.27)  –0.31 (.23) .95 (.21) 

8 30 3.36 0.95  0.07 (.26)  0.06 (.23) .01 (.08) 

9 30 3.01 0.91  0.93 (.27)  0.93 (.24) .00 (.00) 

10 30 3.49 0.87  0.07 (.26)  0.05 (.24) .59 (.49) 

11 30 3.46 1.01  0.28 (.26)  0.28 (.25) 1.0 (.00) 

12 30 3.34 0.88  –0.70 (.27)  –0.73 (.25) .02 (.15) 

Note. Observed score statistics refer to the four-category rating scale ranging from 2 

(below TDN 3) to 5 (TDN 5). RFM = Rasch facets model. MRFM-H = mixture Rasch 

facets model for halo effects. N is the number of essays rated.  Est. is the estimate of 

the rater severity parameter. x Est. is the estimate of the rater halo parameter.  
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Impact of illusory rater effects on examinee proficiency estimates 

The preceding analyses revealed only weak, if at all, evidence of illusory halo effects 

in Study 1 and Study 2 datasets, respectively. Nonetheless, for reasons of complete-

ness, we looked at these effects’ potential impact on the examinee rank-ordering re-

sulting from the RFM and the MRFM-H proficiency estimates.  

The examinee proficiency measures estimated under the RFM and the MRFM-H were 

also perfectly correlated, r(307) > .99 (Study 1), r(206) > .99 (Study 2). Comparing 

the Study 1 RFM-based examinee rank-ordering to the examinee rank-ordering pro-

duced by the MRFM-H estimates yielded an absolute rank-order difference ranging 

from 0 to 7 (M = 1.29, SD = 1.42). On average, examinees' rank orderings differed by 

little more than one rank, depending on which model was used for estimating their 

proficiency. Rank differences of this magnitude do not seem to make a big difference 

in most practical situations (e.g., selection decisions). In Study 2, the corresponding 

absolute rank-order difference was even lower, ranging from 0 to 4 (M = 0.83, SD = 

0.87). Thus, on average, the examinee rank orderings differed by somewhat less than 

one rank, depending on whether the MRFM-H or the RFM was used for estimating 

examinee proficiency. 

Eckes and Jin (2021) applied the facets model–severity and centrality (FM-SC) to the 

Study 1 and Study 2 datasets in a related Bayesian modeling context. They aimed to 

specifically estimate centrality effects and investigate the impact of this rater effect 

on the examinee proficiency estimates and the resulting examinee rank-orderings. The 

FM-SC fit the data better than a facets model specifying a rater severity parameter 

only (FM-S; equivalent to the RFM in the present research). The absolute rank-order 

difference between estimates produced by the FM-SC and those produced by the FM-

S was, on average, four ranks (Study 1) and three-and-a-half ranks (Study 2). This 

finding provides further evidence of the negligibly small impact of illusory halo ef-

fects, at least as far as the present datasets are concerned. 

 

Summary and discussion 

In rater-mediated assessments where each rater assigns multiple scores to examinee 

performances or responses, illusory rater halo effects have been notoriously difficult 

to pin down and separate from true halo effects (Murphy et al., 1993; Myford & 

Wolfe, 2004). When illusory halo effects prevail, the scores fail to differentiate accu-

rately between the performance aspects rated. The use of correlation-based statistics 

(e.g., trait intercorrelations) or specifically designed rating procedures (e.g., multi-

rater single-trait designs) does not seem to offer a practically viable solution to this 

problem (Bechger et al., 2010; Lai et al., 2016).  

We opted for a Rasch measurement approach building on the facets modeling frame-

work (Eckes, 2015; Linacre, 1989). More precisely, we applied the mixture Rasch 
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facets model for halo effects (MRFM-H; Jin & Chiu, 2022) to two real datasets that 

had been analyzed before in a different measurement context (Eckes & Jin, 2021). 

Unlike the basic Rasch facets model (RFM) that does not aim to detect halo effects, 

the MRFM-H distinguishes two latent classes of raters: the class of illusory halo raters 

and the class of normal raters showing no halo effects. For each rater, this model es-

timates the likelihood that he or she belongs to the class of raters exhibiting illusory 

halo effects. 

The datasets came from two separate three-facet assessment situations with independ-

ent samples of examinees and raters using scoring rubrics, including three (Study 1) 

or nine criteria (Study 2). In both studies, raters assigned scores to examinees using a 

four-category rating scale. The three-facet rating data provided the input to analyses 

based on the MRFM-H. For comparison purposes, we also analyzed the Study 1 and 

Study 2 datasets building on the traditional RFM. 

We conducted the various facets analyses adopting Bayesian MCMC estimation pro-

cedures using the R package R2jags (Su & Yajima, 2021). Three chains were run to 

estimate model parameters and to provide convergence diagnostics. As evidenced by 

the proportional scale reduction factor (PSRF) values computed for each RFM and 

MRFM-H parameter, respectively, the chains converged to the posterior distribution 

without any problem. In response to the first research question, the posterior predic-

tive p-values (PPP-values) indicated that each model had satisfactorily high data–

model fit. 

For evaluating the model’s relative fit to the data, we used three different Bayesian 

comparison indices (Gelman et al., 2013, 2014; Luo & Al-Harbi, 2017): the Deviance 

Information Criterion (DIC), the Watanabe–Akaike Information Criterion (WAIC), 

and the Leave-One-Out Information Criterion (LOOIC). Unlike DIC, the last two in-

dices were computed using the R package loo (Vehtari et al., 2020). The differences 

in model fit were consistently lower for the RFM, but these differences were negligi-

bly small in most cases. The only exception was that the DIC statistic favored the 

RFM over the MRFM-H in Study 1. Therefore, the MRFM-H did not outperform the 

RFM in model fit, answering the second research question. Overall, these results seem 

to indicate that neither the Study 1 nor the Study 2 raters were subject to illusory halo 

effects in any substantial way. 

Responding to the third research question, we looked at each rater’s likelihood to show 

illusory halo effects. We did so, although the model fit comparisons did not speak in 

favor of the MRFM-H. Also, we wanted to compensate for the model’s potentially 

reduced power of detecting such effects when raters scored only small samples of 

examinee performances. In particular, the number of essays each rater scored ranged 

from 19 to 68 in Study 1 (M = 36.0); in Study 2, all raters scored 30 essays (except 

for one rater scoring 29 essays). Compared to the rater workload typical of large-scale 

assessments, these numbers can be considered small. Whereas in Study 1, the esti-

mates (with their associated standard errors) of the x-parameter did not suggest any 

rater to exhibit illusory halo, in Study 2, we identified three raters with x-estimates 

between .95 and 1.0 (and small SEs), indicating a tendency to provide illusory halo 
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ratings. The model fit comparisons may have precisely missed these tendencies due 

to the low sample size. In any case, it appears worthwhile inspecting these three raters’ 

observed rating vectors closely to learn more about their possibly aberrant rating be-

havior and, thus, inform rater training (or retraining) activities. 

This conclusion leads us to discuss some practical implications of the present research. 

For assessments in the particular context of TestDaF examinations, our findings seem 

to suggest that illusory halo effects do not prevail in raters’ judgments of examinee 

performances. At first sight, this is good news for TestDaF scoring rubric develop-

ment and rating quality assurance measures. However, as already mentioned, in both 

studies, raters scored a relatively small set of examinee performances. For example, 

in a typical TestDaF examination, raters have to score a minimum of 63 essays (i.e., 

60 essays plus three essays scored by all raters), often many more (a rater's workload 

may exceed 200 essays).4 Therefore, the present finding that raters were not subject 

to illusory halo effects to any substantial degree needs to be validated in large-scale 

assessments, where raters have a much higher workload on average (Jin & Chiu, 

2022). TestDaF exams administered long after the two exams we considered here 

were taken by many thousands of examinees and, therefore, seem well suitable for 

this purpose. 

A related caveat refers to the magnitude of differences in criterion difficulties. In 

Study 1, only three criteria were used, and two of these criteria (task fulfillment, lin-

guistic realization) had highly similar difficulty estimates. In Study 2, raters scored 

performances based on a rubric containing nine different criteria, but the difficulty 

estimates for most of these criteria were again not markedly different. Low variation 

in criterion difficulty, of course, decreases the likelihood of accurately classifying 

raters as normal raters or illusory halo raters (Jin & Chiu, 2022). The lessened classi-

fication accuracy may provide another explanation for why three halo raters were 

flagged in Study 2, but the Bayesian comparison statistics did not favor the MRFM-

H. In future MRFM-H applications to TestDaF rating data, close attention should be 

paid to the extent to which criterion difficulties vary before concluding that raters are 

free from illusory halo effects.  

 For rater-mediated assessments more generally, the present findings substantiate the 

utility of Jin and Chiu’s (2022) mixture Rasch facets model. Standing in the strong 

tradition of facets modeling, the MRFM-H provides estimates of examinee profi-

ciency corrected for rater severity differences and corrected for illusory halo effects 

(if any). Bayesian parameter estimation, conducted with free JAGS software within 

the R environment, proved to be efficient at fitting the data to the model. Therefore, 

the MRFM-H holds much promise to contribute significantly to achieving high rating 

quality. 

 

4 These figures refer to the paper-based version of the TestDaF only. As of autumn 2021, the completely 

web-based (digital) TestDaF was released (Kecker et al., 2022). The digital TestDaF, which will even-

tually replace the paper-based version, employs a holistic scoring rubric where halo effects are mini-

mized by design. 
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Finally, in this research, we focused exclusively on applying a new psychometric 

model to address the issue of detecting halo. We did not focus on the cognitive or 

judgmental processes that may cause illusory halo effects, if observed, in the first 

place. Any of the processes discussed by Fisicaro and Lance (1990) may be the ob-

jective of future research. Such research would preferably combine Rasch-based 

measurement approaches such as the one presented here with more qualitatively ori-

ented approaches building on structured interviews, stimulated recall, or verbal pro-

tocol analysis (Myford, 2012; Turner, 2014). 

 

Conclusion 

Being one of the four classic rater effects (severity/leniency, halo, central tendency, 

and restriction of range), “the halo effect has been the most studied and has received 

the widest attention in the research literature” (Myford & Wolfe, 2003, p. 395). The 

wide research interest notwithstanding, psychometric methods and statistics aiming at 

detecting or measuring these sources of error in human judgment have met with little 

success. By contrast, methods for measuring other classic rater effects, particularly 

severity/leniency and central tendency (Eckes, 2015, 2019; Eckes & Jin, 2021; Engel-

hard & Wind, 2018), have been much more successful. The long-standing problem 

with halo effect detection is distinguishing true from illusory halo. More than 100 

years after Thorndike (1920) coined the term "halo", the MRFM-H (Jin & Chiu, 2022) 

is an important step forward in separating these two components and, therefore, meas-

uring, and controlling for, illusory halo effects. Future MRFM-H-based research using 

various kinds of rating designs, scoring rubrics, and rater and examinee samples will 

help broaden our understanding of the nature of halo effects and their role in rater-

mediated assessments.  
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